迟疾纪差,三万一百八十。求其数之所生者,置一纪积月,以通数乘之,通周去之,余以减通周,所减之余,纪差之数也。以之转减前纪,则得后纪。不足减者,加通周。求次元纪差率,转减前元甲寅纪差率,余则次元甲子纪差率也。求次纪,如上法也。

推朔积月术曰:置壬辰元以来,尽所求年,外所求,以纪法除之,所得算外,所入纪第也,余则入纪年数。年以章月乘之,如章岁而一为积月,不尽为闰余。闰余十二以上,其年有闰。闰月以无中气为正。推朔术曰:以通数乘积月,为朔积分,如日法而一为积日,不尽为小余。以六十去积日,余为大余。大余命以纪,算外,所求年天正十一月朔日也。求次月,加大余二十九,小余二千四百一十九,小余满日法从大余,命如前,次月朔日也。小余二千一百四十以上,其月大也。推弦望,加朔大余七,小余千七百四十四,小分一,小分满二从小余,上余满日法从大余,大余满六十去之,余命以纪,算外,上弦日也。又加得望、下弦、后月朔。其月蚀望者,定小余,如所近中节间限,限数以下者,算上为日。望在中节前后各四日以还者,视限数。望在中节前后各五日以上者,视间限。

宋书·卷十二·志第二·历中

迟疾纪差,三万一百八十。求其数之所生者,置一纪积月,以通数乘之,通周去之,余以减通周,所减之余,纪差之数也。以之转减前纪,则得后纪。不足减者,加通周。求次元纪差率,转减前元甲寅纪差率,余则次元甲子纪差率也。求次纪,如上法也。

译文:
这是宋书卷第十二志中的“历中”部分,讲述了古代历法中关于纪差的计算方法。首先,我们得知迟疾纪差是三万一千八百一十八个。为了找出这些纪差产生的原因,我们设置一个纪元的积月(即一个月的长度),然后将这个长度乘以通数。通数是360天除以一年的天数(通常为365天)。这样得到的结果就是我们所需求的纪差。然后用这个结果去除以通周,得到的余数就是纪差的数量。接着,我们用这个数字来转减前面的纪差,从而得到后面的纪差。如果有余数,就加上通周。接着我们计算下一个元纪差率,然后再减去前面的甲寅纪差率,得到的余数就是下一个元甲子的纪差率。然后我们再计算下一个纪,同样的方法应用即可。

推朔积月术曰:置壬辰元以来,尽所求年,外所求,以纪法除之,所得算外,所入纪第也,余则入纪年数。年以章月乘之,如章岁而一为积月,不尽为闰余。闰余十二以上,其年有闰。闰月以无中气为正。

译文:
推朔积月术是这样的:从壬辰元年开始,一直到所要求解的年份为止,除去所要求的年份,用纪法(即一年中的月份数)除以这个数。除不尽的部分就是所进入的纪数(即这一年有多少个完整的月份),剩下的就是这一年的年数。然后用章月(即一年中的月份数)乘以这个年数,得到的结果就是这一年的积月数,但如果没有满一年的月份,那么积月数会多一个单位(称为“闰余”),也就是这一年中有额外的一个月。如果闰余超过12个月,那么这一年就有闰年。闰月是以没有中气的月份作为正常月份的。

推朔术曰:以通数乘积月,为朔积分,如日法而一为积日,不尽为小余。以六十去积日,余为大余。大余命以纪,算外,所求年天正十一月朔日也。求次月,加大余二十九,小余二千四百一十九,小余满日法从大余,命如前,次月朔日也。小余二千一百四十以上,其月大也。

译文:
推朔术是这样的:将通数乘以积月(即一个月的长度),得到的结果是朔积分。如果朔积分能被日法整除,那么就是积日;如果不能整除,那么就有余数(称为小余)。然后用60去除这个余数,得到的商就是大余。如果大余在计算结果之外,那么这就是所要求的年天正十一月的朔日。接下来我们要找到次月的朔日,方法是在大余的基础上加上29,再加上小余两千四百十九,如果小余满日法,那么就跟随大余;如果不满,那么就从大余里减去这个数。最后我们得到小余超过2140的部分,这意味着次月的月亮比平常的大。

阅读剩余 0%
本站所有文章资讯、展示的图片素材等内容均为注册用户上传(部分报媒/平媒内容转载自网络合作媒体),仅供学习参考。 用户通过本站上传、发布的任何内容的知识产权归属用户或原始著作权人所有。如有侵犯您的版权,请联系我们反馈本站将在三个工作日内改正。